Generalization of Tetris: A strategic game with a variety of morphing shapes flowing through topological holes with increasing variety and speed, and complementaries that interact to break down into smaller ones, and a global goal to sustain their flow from clogging the system.


We can safely say that no known human has lived past 200 years old. The death rates closely follow the Gompertz–Makeham law of probability, which describes well a processes of interaction of criminals that are able to build fortresses after not being captured in time, and a slowly decaying number of patrolling policemen to contain them. Interestingly, this is very similar to build up of hard-to-eliminate structures within game of Tetris, as the relative (to our reaction) speed of falling bricks slowly increases.

In real life, the analogy to game of Tetris can be extended. We know that AI can play games well, so, here's an idea for a more general analogy to create an opportunity for search of generic strategies, which could then be reapplied back to longevity practice. For examples of strategies from the game of Tetris, -- slower and less complex bricks are good (e.g., less food, simpler/slower food); complementary bricks eliminating multiple lines are good (e.g., liquids wash away, and certain substances like lecithin helps to do that for lipids too).

So, instead of Tetris, imagine a game that allows a player to grow a network of tubes, which starts from a single inflow point and grows filled with a liquid that carries morphing shapes through the system. The goal of a player is to grow network and optimize flow of shapes through it by tinkering with parameters and preventing shapes from clogging as the variety of shapes and the speed of flow increases. The player could make decisions as to where the new shapes should/could go, and what factors to encounter. As a strategic game, the player should be able to use some of those materials to grow various "organs" in the network, producing other shapes (think -- "enzymes") that, if, if complementary, then eliminate the blockages by bursting into smaller pieces.

The game score would be computed as the cumulative effect of network size that the player was able to grow, and the number of eliminated complementary shapes.

Credits: Inyuki of HalfBakery.

(suppress notifications) (Optional) Please, log in.